
HIGH-LEVEL CONTROL SYSTEM IN C#*

H. Nishimura, C. Timossi, G. Portmann, M. Urashka, C. Ikami and M. Beaudrow
Lawrence Berkley National Laboratory, Berkeley, C A 94720, U.S.A.

Abstract
We have started upgrading the control room programs

for the injector at the Advanced Light Source (ALS)[1].
We chose to program in C# exclusively on the .NET
Framework[2] to create EPICS[3] client programs on
Windows Vista PCs. This paper reports the status of this
upgrade project.

INJECTOR CONTROLS UPGRADE

Current Status
The ALS control system has been gradually migrating

from the original control system[4] to EPICS for over a
decade. All the new devices are controlled by EPICS.
However, this effort was focused on the storage ring. The
original system still plays a primary role in the injector
section since it’s commissioning in 1991. The key
component there is called Display Micro Module (DMM)
through which all the original programs access the
devices. As the DMM uses hardware that is no longer
supported, it must be replaced in the near future with
IOCs The old applications that control the injector are
also not worth adapting to channel access. With the new
demands placed on the injection system by top-off, we
believe that the control room applications for the injector
should simply be re-written.

Upgrade Plan
We have been very impressed with Microsoft Visual

Studio[6] and it’s ability to build visual applications
quickly and on the .NET Framework 3.5 that is the
platform for current development on Windows. We are
finally moving off the Windows 2000 OS, which is no
longer supported, and onto new hardware running Vista.
We plan to use SCA.NET[5], a C#EPICS CA wrapper
class in , that we’ve been using elsewhere for over 5
years.

We decided to keep using WinForms, the GUI
framework of .NET 2.0, to reuse the libraries we have
developed for EPICS client programs for the storage ring.
At the programming language level, we use the new
features of C# 3.0 for much better efficiency.

For hardware we have 7 PCs with 64-bit quad-core
CPUs: 2 Windows 2008 Servers, 2 development consoles
and 3 operator consoles. The operator consoles are
equipped with 30” LCD monitors and knob panels that we
mention later. These consoles also display existing
EPICS MEDM/EDM clients and Matlab programs on the
X11 servers. Although we have been using C# for years to
create EPICS clients, C# is still relatively new to the

accelerator controls community. Therefore, as as a
demonstration, we chose to start with a small but operator
intensive section of the accelerator and create a program
that integrates many older applications.

 The region we chose is from the electron gun (EG),
through the gun to the linac beam transport line (GTL),
the linac (LN), to the end of the beam transport line (LTB)
to the booster ring. The most complicated devices to
control are the electron gun, the linac system and the
timing system. Their control logic is being ported to C#
together with some hardware modification were needed.
Other devices, listed in Table 1, are relatively simple. We
created a new program called CTLBook to replace
multiple existing programs.

Table 1: Numbers of Simple Devices

Device EG GTL LN LTB Total
Bend 0 0 0 4 4
Steering 0 8 4 8 20
Quad 0 0 2 9 11
Solenoid 0 3 4 0 7
BPM 0 2 1 6 9
Scintillator 0 2 2 6 10

SOFTWARE DESIGN
 We have two major design goals. We want all the

applications to be data driven, to allow changes to be
made with out necessarily requiring code changes, and to
be component based.

Data-driven Architecture
The new programs are made highly data-driven. EPICS

channels(pv) have been managed by the MySQL database
and accessed by the EPICS client programs. There are
over 16K channels for the entire ALS, and about 600 are
in the target region. We use ADO.NET to access various
SQL databases, and load the data to the ADO.NET
DataTable objects at runtime. We usually save the data in
these DataTable objects to XML files, and repopulate
them from XML. This reduces the effort of managing the
database systems on the operator consoles. We created
several tools to manage XML in a context of accelerator
controls. Fig. 1 is one of such tools.

XML becomes even more important when the concept
of the devices comes in. As the complexity of the devices
varies over wide range, a flat data structure of the
database tables cannot support it without relying on the
relations among multiple tables. In contrast, XML is
flexible enough to support complex devices. We have
constructed over 2000 devices by taking the information
from the original system that has some concept of devices
by imposing a strict naming convention, and applying
empirical rules repeatedly to over 16K of EPICS

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC02-05CH11231

channels. The resulting XML file containing the device
definitions is the core of this project. Fig.2 shows one of
the devices there. XML is also used for application-
specific data and configuration files. This means that all
the data files are now in XML.

Fig.1. Database to XML Tool

Fig.2. Example of a Device in XML

Component-based Development
We have been developing the components and the

application programs in parallel by using Visual Studio.
We have created total 40 custom components; 10 for GUI
and 30 for controls. About 1/3 of them are in the real use.

Here are some examples. Fig. 3 shows components
used in CTLBook. There are three kind of device
components for scintillators, magnet power supplies
(MPS) and BPMs. They reference the DeviceDB control
that manages the devices information by loading the
device XML file, and the ScaControl that holds the
SCA.NET object and manages channel accesses at
runtime. Fig.4 shows a MPS control at design time that is
assigned to the device GTL___VC4. This name is passed
to the DeviceDB to retrieve its channels and knob
parameters. When it starts running, it is registered to the
ScaControl to have the access to its EPICS channels. A
MPS controls has small button titled “S” for “setting” at
the upper-left corner. This pops up a window (Fig.5) to
monitor and control all of its channels. These device
controls are used to create an integrated program
CTLBook (Fig.5).

Fig.3. Components used by CTLBook

Fig.4. MPS Component

Fig.5. MPS Control Panel

Fig.6. CTLBook

Here is another example. Accelerator operators always
use the proprietary hardware rotary knobs (Fig.7) to tune
up the injector. The new system must support them.

HARDWARE
Some of the functionality that we need for operating the

injector requires upgraded hardware as well as software.
The existing hardware was just too deeply tied to the
existing control system to be able to use it.

Knob Panels

Fig.7. Hardware Rotary Knobs

We developed a software knob component (Fig.8) and
linked it to the existing rotary knobs and also other USB
knobs, such as PowerMate[7]. Once the device name is
assigned, it retrieves its information thorough the
DeviceDB component.

Fig.8. Software Knob Component

We used 3 of them to create a software knob panel (Fig.
9) that locates itself always at the bottom of the 30”
display. CTLBook is one of its client programs that can
talk to it. The knob assignment to a device is done by
using the MPS control panel in case of CTLBook.

Fig.9. Software Knobs

Scope and TV Signal Displays
CTLBook has two scope displays in the upper-left

region. They read the EPICS wave form data and simply
display them by using a plot component. Among many
options, we chose TeeChart[8] for plotting. CTLBook
also displays two live TV images in the upper-left region.
They are the beam spots on the scintillator plates. We use
MOXA video encoders[9] to transfer images from TV to
the network. We modified one of their sample programs
in C# to create the component.

DISCUSSION
We have created and released a highly integrated

program CTLBook for real online testing. The data-driven
and component-based architecture works efficiently.
Compared to our previous experience with Delphi on
Win32[10], development in C# on .NET bring much
better productivity. We will continue to develop in this
manner.

One issue we have encountered is the very tight
security of Windows Vista. We managed to keep the User
Account Control (UAC)[11] enabled on the operator
consoles. Although it requires extra steps in deployment,
it helps to maintain the system secured and stable.

The performance of a PC console is very satisfactory. It
can run CTLBook, several other C# programs, and dozens

of X11 windows hosting EPICS DM and Matlab sessions
with very low overhead.

AKNOWLEDGEMENTS
The authors thank A. Biocca and D. Robin for their
support, E. Williams for firmware development of rotary
knobs, S. Jacobson for supporting virtual device channels.

REFERENCES
[1] ALS CDR, LBL PUB-5172 Rev. LBL,1986

 A. Jackson, IEEE 93PAC, 93CH3279-7,1432, 1993.

[2] http://www.microsoft.com/net/

[3] L.R. Dalesio, et al., ICALEPCS ’93, Berlin,
Germany, 1993.

 http://www.aps.anl.gov/epics/

[4] S. Magyary, IEEE PAC93, 93CH3279-7,1811,1993.

 S. Magyary et al, NIM A 293, 36-43, 1990

[5] H. Nishimura and C. Timossi, PCaPAC 2005

 H. Nishimura and C. Timossi, PCaPAC 2006, p37

 C. Timossi and H. Nishimura, PCaPAC 2006, p56

 C. Timossi and H. Nishimura, PCaPAC 2008 (this
proceedings)

[6] http://msdn.microsoft.com/en-us/vstudio/default.aspx

[7] http://www.griffintechnology.come

[8] http://www.teemach.com/

[9] http://www.moxa.com/

[10] C. Timossi and H. Nishimura, IEEE PAC’97, 0-7803

 -4376-X/98, p805, 1998

[11]http://technet.microsoft.com/en-us/library/

 bb629420.aspx

	HIGH-LEVEL CONTROL SYSTEM IN C#*
	INJECTOR CONTROLS UPGRADE
	Current Status
	Upgrade Plan

	SOFTWARE DESIGN
	Data-driven Architecture
	Component-based Development

	HARDWARE
	Knob Panels
	Scope and TV Signal Displays

	DISCUSSION
	AKNOWLEDGEMENTS
	REFERENCES

